United States Patent

US009342072B2

(12) 10) Patent No.: US 9,342,072 B2
Holmes et al. 45) Date of Patent: May 17, 2016
(54) METHODS AND APPARATUS TO DISPLAY 20069/6028132,?‘7‘2 izl * ;gg(l)g gOImeS L HO4L 12/40013
armon et al.
PROCESS CONTROL DEVICE 2007/0038963 AL* 2/2007 MOOTEcovovrerirererrins 715/859
INFORMATION 2008/0077512 Al 3/2008 Grewal
2008/0097637 Al* 4/2008 Nguyenetal. 700/110
(75) Inventors: David Farrell Holmes, Chanhassen, MN 2009/0200245 Al* 8/2009 Steinbrueck etal. 210/741
. 3 2010/0095233 Al 4/2010 Skourup et al.
&JE)E[]J)S(S??)]:]?;IZ‘::YL;;:LI;“’ Chaska, 2013/0024495 Al* 12013 Armstrong GOSB 19/0426
’ > 709/203
Burnsville, MN (US); David Michael
Parsons, Victor, NY (US); Harry Alan FOREIGN PATENT DOCUMENTS
Burns, Altonna, IA (US)
CN 101464685 A 6/2009
(73) Assignee: FISHER-ROSEMOUNT SYSTEMS, g}g 18(1) 55‘82328 A ggggg
INC., Round Rock, TX (US)
(Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 1301 days. Patent Cooperation Treaty, International Search Report, mailed on
Mar. 16, 2012, for application serial No. PCT/US2011/052573, 7
(21) Appl. No.: 12/890,294 pages.
Continued
(22) Filed: Sep. 24, 2010 ¢)
(65) Prior Publication Data Primary Examiner — William Titcomb .
(74) Attorney, Agent, or Firm —Hanley, Flight and
US 2012/0079407 Al Mar. 29, 2012 Zimmerman, LLC
(51) Imt.ClL (57) ABSTRACT
gzgg %%ﬁ 88(1)288 Example methods and apparatus to display process control
(52) US.Cl ’ information are disclosed. A disclosed example method
oo] includes receiving in a processor a first status of a first mode
CPC oo GOSB 23/0216 (2013.01); GOgg 133/ %4;8 element, the first mode element indicating a current operating
. . . (D) condition of an object of a process control device, receiving in
(58) Field of Classification Search the processor a second status of a second mode element, the
CPC ... - GOGF 3/048 second mode element indicating a desired operating condi-
USPC R SIS 715/772 tion of the object of the process control device, determining a
See application file for complete search history. mode of the object based on the first status and the second
. status, the mode indicating a condition of the object of the
(56) Ref Cited g !
eferences Cite

U.S. PATENT DOCUMENTS

6,298,454 B1 10/2001 Schleiss et al.
8,555,206 B2 10/2013 Pederson et al.

FHELL DEVEDE e B0E

RESOURCE
CEMNFHGORATION BLOOCK

THANSDUCER
CONFIGURATION 8LOCK

process control device, and displaying the mode of the object
of the process control device within a user interface as a
graphic.

27 Claims, 12 Drawing Sheets

oo B

518
_OYES ! IHSPLAY 14 |
L e SERVICE

DARRAFIC

WY 18
OBERVIDE"
| GRAPHIC |

PROCEDSHON

e 547

INTERFACE

US 9,342,072 B2
Page 2

(56) References Cited

FOREIGN PATENT DOCUMENTS

EP 0813131 A1 12/1997

GB 2347233 A 8/2000

JP 07-287794 A 10/1995

JP 11-120031 A 4/1999

JP 2005-202681 A 7/2005

JP 2007-257444 A 10/2007
OTHER PUBLICATIONS

Patent Cooperation Treaty, Written Opinion, mailed on Mar. 16,
2012, for application serial No. PCT/US2011/052573, 11 pages.
International Searching Authority, PCT Article 17(3)(A) and Rule
40.1 and 40.2 (e), issued for patent application serial No. PCT/
US2011/052573, mailed on Dec. 15, 2011, 5 pages.

Patent Cooperation Treaty, “International Preliminary Report on Pat-
entability,” issued in connection with Application No. PCT/US2011/
052573, Mar. 26, 2013, 1 page.

Patent Cooperation Treaty, “Written Opinion of the International
Searching Authority,” issued in connection with Application No.
PCT/US2011/052573, Mar. 26, 2013, 10 pages.

European Patent Office, “Communication pursuant to Article 94(3)
EPC”, issued in connection with European patent application No. 11
771 295.0, Aug. 14, 2015, 6 pages.

State Intellectual Property Office (SIPO) of the People’s Republic of
China, “Notification of the Second Office action”, issued in connec-
tion with Chinese patent application No. 201110277222 .4, mailed on
Nov. 18, 2015, 14 pages.

The State Intellectual Property Office of the People’s Republic of
China, “The First Office action”, issued in connection with Chinese
patent application No. 201110277222 .4, mailed on Mar. 24, 2015, 22
pages.

Japanese Patent Office, “Notice of Reasons for Rejection”, issued in
connection with Japanese patent application No. 2013-530285, Sep.
15, 2015, 13 pages.

* cited by examiner

U.S. Patent

May 17, 2016

“~ p
- .

INTERFACE
PROCERSOR

o 7

Sheet 1 of 12

WORKETATION

US 9,342,072 B2

e 100

DEVICE
CESCRIPTOR
DATABASE

PEOGESS CONTROL SYSTEM

108

T8 o,

CONTROLLER

IR

G CARD

oiinniinniinee

L~ 114

146

me U

e 112

U.S. Patent May 17, 2016 Sheet 2 of 12 US 9,342,072 B2

108

CONTROLLER
- 118
. ~ 102
CONTROLLER RUNTIME DATA BLOGK MODE
INTERFACE it BEOEIVER e S WENT
208 PARSER
288 ari} PN
| ‘g L
CROSSBLOCK WODE
PROCESSOR bl CALGULATOR
¥
CONBITICHNAL
BRAPHIC
MANAGER
£18
MODE .
SELECTOR AR
SELECTION APPLICATION
RECEIER i INTERFACE MYERFACE
214 212 PROCESSOR

FiG. 2

|

US 9,342,072 B2

Sheet 3 of 12

May 17, 2016

U.S. Patent

£ Oid

CEFT A G

RO VHRIT™D

| O YRICHN A3

g1g —

SHERL AAMEE

HHOERANDD

>

A AHEAG

QoD

g~ ZATEAEYA A5 0dHN AMVIIR

BT

AHAYES N

RiE —

e L

D — GAATG

FSEPAS A

BOVAMBIN HAST LA

e 2O

U.S. Patent

May 17, 2016

Sheet 4 of 12

US 9,342,072 B2

e {3
Biock Mods Slement Status Configuration
Target | Actwsl | Mommal Hlook Mode
At Auto At Moyt
Autn L35 Ayt Ereor
3435 LIS Azt Camndi T
05 Q0% SIS st Ugend
FiG. 4
FHEELD DEWVILE o~ BOA /
RESOURCE
COMPIGURATION BLOCK B ﬁffeﬁ 614
ans R
1 IS BLOCK MODE *'\ YES DHSPLAY ”{N :
e ELEMENT 1 wo pew BERVICET
N AUTOY e GRAPHIC
,""";5'?i3
. / 1B BLOCK M{}QE \
k M ELEMES
: AN AUTOY ,./ :
3 k& T - 816
TRANSDUCER o [FBLICEMODE N NS
CONFIGURATION BLOGK - "“%\ o # / Sl SERVICES |
; B e 3 j Y
' : CNO L Grapmn
[P e I
FIUT}CY “EQE}E T
mﬁ}n 3 h,/ INTERPFACE
it PROCESSUR
e B34 R £4 354

US 9,342,072 B2

Sheet 5 of 12

May 17, 2016

U.S. Patent

g "9id

Jr—,

OO HIMA N

MMLYARIYD w “ BMLYFIROEN 330

BEg

SINGLHGHE

FAODROD

MAFIAYENG

ST

SHTRVHYA SR0SHN ANk

4%
L3}

e

EON 808 - L 3TRARG

PALLY i BIVIS

g
2
%

AEHAMIAC YR ey

aamazn

HARANIAD

FUAAMALNE MERN LA

US 9,342,072 B2

Sheet 6 of 12

May 17, 2016

U.S. Patent

8 'Ol

s
S R <~
z

S

AR

A NGBS | MO T SEYA | AV N0 | S viualen | NG osas T

FOVAHILIN ¥ESD LAG

- {0

404

. ;

AR BN -

FOYAHALING WD 1AG

- 03

U.S. Patent

May 17, 2016

i
e .

o -
{ GHN
5 {3 .

AR S,
e e,

i'\ GEHECTY 2 .

-
et

0 SE T W

Sheet 7 of 12

Louig

IS OBJIECT 1 ™,
LICENSEDY

IS OBJECT 2

LcENsED? T

INTERFACE
PROCESSOR

FIG. ¢

YES

NEH et AOPEDY I
| DISPLAYED IN

US 9,342,072 B2

po e o v R e e e o o o

D OBIECT 1NOT

NQ: pyepl AYED I
USER

INTERFACE

: .
LIVIVEIURVUR I |

CHSDPLAY
CRIECT 2 N
LISER
i INTERFACE

L OBIEQT ¥ ROT

INTERFACE

U.S. Patent May 17, 2016 Sheet 8 of 12 US 9,342,072 B2

{ START 3 _
000 ‘ o

RECEWVE STATUSES OF BLODK MORE
ELEMENTS ASSOUCIATED WITH A FIELD L S
DEMICE

v

ACCESS THE DEVICE DESCRIPTOR DATABASE L— 1104
FOR & DEVICE DEFINITION FILE

DETERMINE GRAPHICIS DISPLAYED WATHIN &L~ 1008
UBER INTERFACE

4.

PARBE STATUSES OF BLOCK MODE o TR
ELEMENTS

!

DETERMINE A MODE OF BACH

CORFHAURATION BLOCK BASED ON oo R

STATUTES OF COBREBPOIIDING BLOGK
RMODE ELEMENTS

v

WO IS A GEAPHIC OF BEAUH ™ P kiR
DONFIGURATION BLOCK HSPLAYEDRY

“\
,L. YES
BIEPLAY THE MODES BF THE e 1044

CONFEBURATION BLOCKS

e
| i/ ARE THE CONFIGURATION BLooKg MO

ASSOCIATED WITH A COMPORENT? /!2
#Yﬁ& R U "

DETERMINE A MODE OF THE COMPDONENT(E)
BASED ON MORER OF CORRESPONIHNG
CONFEZURATION BLOGCKS

A
FIG. 10A &/

U.S. Patent May 17, 2016 Sheet 9 of 12 US 9,342,072 B2

1000 -
W
o G
S A GRAPHIC OF BACH COMPONENT \ MO
IHSHLAYED?
YEZ
. ‘ W28
(B) DISHAY A MODE FOR EAUH COMPONENT

‘ LA 3{}2*“}'

bl DETERBINE A RMODE OF THE FIELD DEVICE e

i

BISPLAY A MUDE OF THE FIELD DEVICE o A0

¥ e 1028
“ IS A GRAPHIC ASBOCIATED WITH A N
MODE OF A PROCESS CONTROL Pt
SYSTEM?

‘, YES

e < ARE MODES OF ALL FIELD DEVICES \>

DETERBIKED? /»
‘x yes i3
DETERMINE A MODE OF THE PROCESS
CONTROL SYSTEM BASED ON MUODES OF THE
FIELD DEVICES
vir o 30334
DISFLAY A MQDE OF THE PROUCESS CONTROL
RYBTEM
‘ 4136
YES - oot oop o .
BECEWE ADDITIONAL RUNTIME DATAY '
"

Tvo

{ END)

FiG. 10B

U.S. Patent May 17, 2016 Sheet 10 of 12 US 9,342,072 B2

1400
Y

{ START 3

RECEIVE AN INSTRUCTION TO SET A FIELD
DEVICE TO A DESIRED MODE

i

DETERMINE BLOCK MODE ELEMENT(S) |~ 1104
ASSOCIATED WITH THE FIELD DEVICE

;

AGCESS A DATABASE AND DETERMINE A

STATUS FOR THE BLOCK MODE ELEMENT(S P 1100
ASSOCIATED WITH THE SELECTED MODE
GENERATE A MESSAGE 10 CHANGE THE .

BLOOK MODE BELEMENTIS) TO THE
DETERMINED STATE

TRANSIIT THE MESEAGE INCLUDHNG THE
JTATUS GF THE BLOOCK MODE BLEMENTIE} TG
THE FIELD DEVICE

FIG. 11

U.S. Patent May 17, 2016 Sheet 11 of 12 US 9,342,072 B2
(BTaRT }
.L e $202
RECEIVE STATUS INFOHMATION FROM A "
FIEELD DEVICE i

ALGCESE A DATARARE AKD DETERMINE F AN
ORIECT ABSOOCIATED WHTH THE FIRLD
DEVIGE 15 ACTHATED?

:

- 1204

/

N

YES s
e VR ¥ e 4290
DISPLAY GRAPHINS ASSOCIATED AN APPLICATION 1S DISPLAYED
WITH THE DBIEDT WITHIN AN WITHOUT GRAFHIC CORBESPONDING
APFLICATION TEVTHE OBIEGT
¥ 3232
d)
< ADTHTIOMAL UBJECTS? N\YES
N /
{ EMD 3

FiG. 12

U.S. Patent May 17, 2016 Sheet 12 of 12 US 9,342,072 B2

PG -,

%
- P2
PROCESSOR
Dm P18
P14
..... 26
pf‘g ~-~-<-_.. e T35 ;;0
“ ‘ 8 DEVICE
o)
CONTROLLER Py
MEMORY E E
CONTROLLER 4O NETWORK
DEVICE MTERFACE
SYSTEM MASS STORAGE
MEMDRY MEMORY
e E32 4 pririo

FiG. 13

US 9,342,072 B2

1

METHODS AND APPARATUS TO DISPLAY
PROCESS CONTROL DEVICE
INFORMATION

FIELD OF THE DISCLOSURE

The present disclosure relates generally to process control
systems and, more particularly, to methods and apparatus to
display process control device information.

BACKGROUND

Process control systems, like those used in chemical, petro-
leum or other processes, typically include one or more pro-
cess controllers and input/output (I/O) devices communica-
tively coupled to at least one host or operator workstation and
to one or more field devices via analog, digital or combined
analog/digital buses. The field devices, which may be, for
example, valves, valve positioners, switches and transmitters
(e.g., temperature, pressure and flow rate sensors), perform
process control functions within the process such as opening
or closing valves and measuring process control parameters.
The controllers receive signals indicative of process measure-
ments made by the field devices, process this information to
implement a control routine, and generate control signals that
are sent over the buses or other communication lines to the
field devices to control the operation of the process. In this
manner, the controllers may execute and coordinate control
strategies or routines using the field devices via the buses
and/or other communication links communicatively coupling
the field devices.

Information from the field devices and the controllers may
be made available to one or more applications (i.e., routines,
programs, etc.) as runtime data executed by the operator
workstation (e.g., a processor-based system) to enable an
operator to perform desired functions with respect to the
process. Some of these functions may include viewing the
current state of the process (e.g., via a graphical user inter-
face), evaluating the process, modifying the operation of the
process (e.g., via a visual object diagram), etc. Many process
control systems also include one or more application stations.
Typically, these application stations are implemented using a
personal computer, workstation, or the like that is communi-
catively coupled to the controllers, operator workstations, and
other systems within the process control system via a local
area network (LAN). Each application station may execute
one or more strategies, routines, or applications that perform
campaign management functions, maintenance management
functions, virtual control functions, diagnostic functions,
real-time monitoring functions, safety-related functions, con-
figuration functions, etc. within the process control system.

Many current field devices, for example, field devices asso-
ciated with the Foundation Fieldbus™ protocol include con-
figuration block(s). To configure these field devices to operate
in a specified mode, each of the configuration block(s) is
individually programmed and/or defined to operate in a
mode. Further, many field devices may have multiple com-
ponents, with each of the components including configura-
tion block(s). To configure these multiple components in a
field device for a particular mode, configuration block(s) for
each of the components is programmed and/or defined to
operate in a mode. Additionally, some of these components
may only be operational based on a specified configuration of
the field device. For example, an unlicensed component may
be deactivated and/or unavailable.

SUMMARY

Example methods and apparatus to display process control
device information are described. In one example, a method

10

15

20

25

30

35

40

45

55

60

65

2

includes receiving in a processor a first status of a first mode
element, the first mode element indicating a current operating
condition of an object of a process control device and receiv-
ing in the processor a second status of a second mode element,
the second mode element indicating a desired operating con-
dition of the object of the process control device. The example
method further includes determining a mode of the object
based on the first status and the second status, the mode
indicating a condition of the object of the process control
device and displaying the mode of the object of the process
control device within a user interface as a graphic.

An example apparatus includes a runtime data receiver to
receive a first status of a first mode element, the first mode
element indicating a first condition of a configuration block of
an object, and to receive a second status of a second mode
element, the second mode element indicating a second con-
dition of the configuration block. The apparatus also includes
a mode calculator to determine a mode of the configuration
block based on the first status and the second status, the mode
indicating an operating condition of the configuration block
of the object. The apparatus further includes a renderer to
display the mode of the configuration block within a user
interface as a graphic.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram illustrating an example
process control system including an example interface pro-
Ccessor.

FIG. 2 shows a functional block diagram of the example
interface processor of FIG. 1.

FIG. 3 shows an application displayed via the user interface
of FIG. 1 that includes a graphic indicating a mode of a field
device.

FIG. 4 shows a table of possible configuration block modes
based on statuses of block mode elements.

FIG. 5 shows a functional diagram of the interface proces-
sor of FIGS. 1 and 2 calculating a mode of a configuration
block and/or a field device based on statuses of block mode
elements.

FIG. 6 shows the application of FIG. 3 including a second
graphic displayed by the interface processor 102 of FIGS. 1
and 2.

FIGS. 7 and 8 show an example of the interface processor
of FIGS. 1 and 2 displaying a menu graphic based on condi-
tional parameter(s) and/or statuses of normal block mode
elements.

FIG. 9 shows a functional diagram of the interface proces-
sor of FIGS. 1 and 2 determining which objects within a field
device are activated and/or available to display corresponding
graphics.

FIGS. 10A, 10B, 11, and 12 are flowcharts of example
methods that may be used to implement the interface proces-
sor of FIGS. 1 and/or 2.

FIG. 13 is a block diagram of an example processor system
that may be used to implement the example methods and
apparatus described herein.

DETAILED DESCRIPTION

Although the following describes example methods and
apparatus including, among other components, software and/
or firmware executed on hardware, it should be noted that
these examples are merely illustrative and should not be con-
sidered as limiting. For example, it is contemplated that any
or all of the hardware, software, and firmware components
could be embodied exclusively in hardware, exclusively in

US 9,342,072 B2

3

software, or in any combination of hardware and software.
Accordingly, while the following describes example methods
and apparatus, persons of ordinary skill in the art will readily
appreciate that the examples provided are not the only way to
implement such methods and apparatus. For example, while
the example methods and apparatus are described in connec-
tion with displaying process control device (e.g., field device)
information, the example methods and apparatus are more
generally applicable and may be implemented to display pro-
cess control device information for any automation system,
batch processing system, manufacturing system, industrial
control system, safety instrumented system, etc. Throughout
the following patent, components, configuration blocks,
block mode elements, features and/or functions are collec-
tively referred to as objects.

Process control systems generally include controllers to
operate routines, control strategies, and/or algorithms that
manage field devices. The field devices may be, for example,
valves, valve positioners, switches and transmitters, and may
perform process control functions such as opening or closing
valves and measuring process control parameters. These field
devices may perform a single function or, alternatively, may
perform multiple functions. In addition to managing field
devices, controllers generate runtime data (e.g., process con-
trol information) based on data received from the field
devices. The runtime data may include process values, statis-
tics, alarms, monitoring information, process trend informa-
tion, diagnostic information, configuration information, field
device status information, and/or messages from the field
devices.

In many process control systems, runtime data is displayed
as graphics within a user interface. The graphics may include
charts, gauges, graphs, menus, tabs, data fields, indicators,
tables, etc. In many instances, graphics within a user interface
are designed and/or configured by system designers, process
control personnel, and/or interface engineers. The graphics
provide a numerical and/or pictorial representation of the
runtime data that operators, engineers and/or other process
control personnel use to manage and control a process control
system. Some of the graphics are used to display statuses
(e.g., modes) of field devices within the process control sys-
tem. Process control personnel may use the graphical repre-
sentation of a field device mode to determine if the device is
operating as specified. If the personnel determine that the
device is not operating as specified, the personnel may adjust
the device through controls displayed on the user interface. In
other instances, personnel may have to troubleshoot an issue
at the location of the device. Thus, displaying a mode of a
process control device is useful to personnel for managing a
process control system.

To display a mode of a field device (e.g., a device mode),
many process control systems display a mode for each com-
ponent (e.g., a component mode) of the field device and may
display a mode for each of the configuration blocks (e.g., a
configuration mode) associated with each component. A
component of a field device is a functional and/or structural
portion of the field device that may be combined and/or
coupled to other components. For example, a pneumatic
valve may include an actuator component, a gauge compo-
nent, and/or a sensor component. In some examples, a field
device may not be partitioned into components. In these
examples, process control systems display a mode for each
configuration block associated with the field device. A con-
figuration block is a parameterized definition of one or more
features and/or functions of a field device and/or component.
A configuration block may be implemented by software and/
or embedded hardware. Typically field devices include at

10

15

20

25

30

35

40

45

50

55

60

65

4

least one resource configuration block that specifies param-
eters (e.g., hardware specific characteristics) that are common
among other configuration blocks within a field device. Field
devices may also contain one or more transducer configura-
tion blocks, which function as a data interface between a
sensor and/or an actuator within a field device. Many trans-
ducer configuration blocks may specify calibration and/or
linearization functions for a sensor and/or an actuator within
a field device. Further, field devices may include one or more
functional configuration blocks that define monitoring and/or
control functionality of a field device and/or components
within a field device. Functional configuration block receive
and/or transmit data to sensors and/or actuators within a field
device via transducer configuration blocks.

Some configuration blocks (e.g., a transducer configura-
tion block) may be fixed by a manufacturer and provide an
operational definition of how a component and/or field device
operates. For example, a transducer configuration block for a
valve actuator defines an algorithm for moving the actuator
based on inputs and/or feedback. Alternately, some configu-
ration blocks (e.g., a resource configuration block and/or a
functional configuration block) may be defined and/or speci-
fied by a user. For example, a functional configuration block
may include calibration information that defines a relation-
ship between a valve controller and a process control system.

In an example, an environment sensor (e.g., a field device)
may include a temperature sensor component and a pressure
sensor component. The temperature sensor component may
be defined and/or configured by a first transducer configura-
tion block and a first functional configuration block. Simi-
larly, the pressure sensor component may be defined and/or
configured by a second transducer configuration block and a
second functional configuration block. The environmental
sensor may be defined and/or configured by a resource con-
figuration block. In other examples, the temperature sensor
and the pressure sensor may be defined and/or configured by
a transducer configuration block and a functional configura-
tion block. The modes of the configuration blocks are based
on statuses of block mode elements.

In many process control field devices, block mode ele-
ments are industry standardized parameters for defining a
mode of a configuration block. A mode defines an operational
status of a configuration block. For example, a mode may
indicate a normal operating status, an error status, a calibra-
tion status, etc. The block mode elements include, for
example, a target element that indicates a mode of a configu-
ration block specified (e.g., requested) by a user, an actual
element that indicates a current mode of a configuration
block, and/or a normal element that indicates a mode in which
a configuration block operates under standard operating pro-
cess control conditions. The block mode elements may have
statuses that include, for example, remote-output, remote cas-
cade, cascade, automatic, manual, local override, initializa-
tion manual, and/or out-of-service. In other examples, a mode
of'a configuration block may be based on fewer or additional
block mode elements. In some examples, statuses of block
mode elements may be specified by a user, a process control
application operating on a workstation, and/or a controller.

Further, in some examples, a user may change an operating
condition of a configuration block by changing a target block
mode element. The user may then determine if the configu-
ration block within a field device accepted the change by
reading the actual block mode element. If the target block
mode element and the actual block mode element have the
same status, then generally the configuration block is operat-
ing in accordance a desired condition of the user.

US 9,342,072 B2

5

In many user interfaces, a device mode of a field device is
based on individually textually displayed statuses of block
mode elements of configuration blocks included within the
field device. The user interfaces typically display the mode of
the field device in this manner because some process control
communication protocols (e.g., the Foundation Fieldbus™
communication protocol) specify that communication with
field devices regarding operational status occurs at the con-
figuration block level. In other words, control of a field device
is based on managing statuses of block mode elements within
configuration blocks for each component. In an example, to
ensure a field device is operating in a normal operating state,
a user checks the actual block mode element of each of
configuration block within each component of a field device.
For a field device with multiple components, with each com-
ponent defined by multiple configuration blocks, a user may
have to determine an operating mode of the field device by
locating within a user interface (and/or multiple user inter-
faces) statuses of actual block mode elements for each of the
configuration blocks. In addition to locating the actual block
mode elements, a user may have to determine how to combine
the statuses of the block mode elements to determine a mode
of'the field device. This may require specific knowledge of the
field device, knowledge about a communication protocol of
the field device, and/or knowledge about a process control
system that includes the field device. As a result, checking the
mode of a field device can be a relatively time consuming
process.

In another example, if a user desires to change a state
and/or mode of a field device, the user has to determine which
target block mode elements within the configuration blocks
need to be changed by locating the target block mode ele-
ments within a user interface. The user then has to determine
to which state and/or status to change the target block mode
elements. The user may then have to locate the actual block
mode elements to ensure the configuration blocks were
changed as specified in the target block mode elements.

The example methods and apparatus described herein
enable a user to manage field devices by combining statuses
of' block mode elements to determine a mode of a configura-
tion block. The example methods and apparatus function as
an interface between field devices and a controller by deter-
mining a mode and displaying the mode as a graphic for a
field device, component and/or configuration block based on
process control status information of block mode elements. In
this manner, the example methods and apparatus described
herein enable a user to view a mode of a field device, com-
ponent, and/or configuration block within a single graphic
that is based on combining block mode elements for all of the
configuration blocks within the field device. Further, the
example methods and apparatus determine statuses of block
mode elements needed to place a field device, component,
and/or configuration block in a mode specified by a user.

More specifically, the example methods and apparatus
described herein combine statuses of block mode elements by
defining modes of a configuration block based on possible
statuses of each of the block mode elements. Because many
process control devices have similarly defined configuration
blocks, the example methods and apparatus may be utilized
for any field device that uses configuration blocks to report a
mode. When a field device is installed within a process con-
trol system, the example methods and apparatus can display a
field device mode graphic in a user interface by accessing
stored configuration block definitions that specify modes.
Further, the example methods and apparatus may define a
mode of a component based on possible mode combinations

20

40

45

6

of'a configuration block. Similarly, the mode of a field device
can be defined based on possible mode combinations of the
components.

By displaying a mode of a field device, component, and/or
configuration block as a graphic, the example methods and
apparatus described herein reduce an amount of graphics
displayed within a user interface, thereby making the user
interface relatively more readable and intuitive to a user.
Further, by reducing statuses of block mode elements into a
mode of a configuration block, a component, and/or a field
device, the example methods and apparatus described herein
reduce possible errors from process control personnel calcu-
lating a mode of a field device by manually combining sta-
tuses of multiple actual block mode elements.

In addition to displaying a mode of a field device within a
single graphic, the example methods and apparatus described
herein use configuration block information to determine
which components, functions, features, and/or configuration
blocks of a field device are available. For example, in many
known systems, some components of a field device may not
be used by a process control system and/or may not be
licensed or purchased. The example methods and apparatus
described herein determine which of the components are not
available and remove from applications graphics associated
with the unavailable components. For example, an environ-
ment sensor (e.g., a field device) may include a temperature
sensor component and a pressure sensor component. A pro-
cess control system owner may only license the pressure
sensor component. However, applications may display a
gauge showing a temperature and a gauge showing a pressure.
The example methods and apparatus described herein deter-
mine that only the pressure sensor component is licensed and
remove the temperature gauge, thereby removing an unused
graphic displayed within an application. Removing unused
graphics provides a relatively easier to read application and
prevents a user from mistakenly believing that a component
feature, and/or function is malfunctioning.

FIG. 1 shows a diagram of an example process control
environment 100 including an example interface processor
102 that maybe used to carry out the example methods and
apparatus described herein. The example interface processor
102 is associated with a process control system 104. Addi-
tionally, the interface processor 102 may be implemented by
and/or included within a workstation 106. In other examples,
the interface processor 102 may be included within a server,
a distributed computing network, and/or any other computing
device(s) that may be communicatively coupled to the work-
station 106.

The example workstation 106 of FIG. 1 may include any
computing device such as a personal computer, a laptop, a
server, a controller, a personal digital assistant (PDA), acom-
puting pad, a micro computer, etc. The workstation 106 may
be implemented using any suitable computer system or pro-
cessing system (e.g., the processor system P10 of FIG. 13).
For example, the workstation 106 could be implemented
using a single processor personal computer, single or multi-
processor workstations, etc.

The example workstation 106 displays applications via a
user interface 107. The user interface 107 enables auser of the
workstation 106 to graphically view (via an application) pro-
cess control information generated by a controller 108. Addi-
tionally, the example user interface 107 enables a user to
manage the process control system 104 by providing graphi-
cal instrumentality that the user may select and/or manipulate
to cause the workstation 106 to send instructions to the con-

US 9,342,072 B2

7

troller 108. The example user interface 107 also displays, via
an application, mode information provided by the example
interface processor 102.

The example process control system 104 may include any
type of manufacturing facility, process facility, automation
facility, safety instrumented facility, and/or any other type of
process control structure or system. In some examples, the
process control system 104 may include multiple facilities
located at different locations within the process control envi-
ronment 100. Additionally, the example process control envi-
ronment 100 may include other process control systems (not
shown) that may be included within the same facility and/or
located at a different facility.

The example process control system 104 includes the con-
troller 108 that may be communicatively coupled to the work-
station 106 via a local area network (LAN) 110. The LAN 110
may be implemented using any communication medium and
protocol. For example, the LAN 110 may be based on a
hardwired or wireless Ethernet communication scheme.
However, any other suitable communication medium and
protocol could be used. Furthermore, although a single LAN
110 is shown, more than one LAN and appropriate commu-
nication hardware within the workstation 106 may be used to
provide redundant communication paths between the work-
station 106 and a respective similar workstation (not shown).

Additionally, the process control environment 100 may
include routers (not shown) to communicatively couple other
workstations (not shown) to the controller 108 and/or to com-
municatively couple the workstation 106 to controllers (not
shown) within other process control systems. Further, the
process control environment 100 may include a firewall (not
shown) to provide remote workstations (e.g., workstations
outside of the process control environment 100) access to
resources within the process control environment 100.

The process control system 104 includes field devices 112
(e.g., input and/or output devices). The field devices 112 may
include any type(s) of process control component(s) capable
of receiving inputs, generating outputs, and/or controlling a
process. The field devices 112 may include control devices
such as, for example, valves, pumps, fans, heaters, coolers,
and/or mixers to control a process. Additionally, the field
devices 112 may include measurement or monitoring devices
such as, for example, temperature sensors, pressure sensors,
concentration sensors, fluid level meters, flow meters, and/or
vapor sensors to measure portions of a process. The field
devices 112 receive instructions from the controller 108 via
inputs 114 to execute a specified operation and cause a change
to the process implemented and/or controlled by the field
devices 112. The instructions may also cause a change to a
mode of the field devices 112 by modifying block mode
elements of configuration blocks. Furthermore, the field
devices 112 measure process data, environmental data, and/or
input device data and transmit the measured data via outputs
116 to the controller 108 as process control information.
While the inputs 114 and the outputs 116 are shown as sepa-
rate paths, in other examples, the inputs and the outputs 116
may share the same communication path and/or link. The
transmitted process control information may include the val-
ues of variables corresponding to a measured output from
each field device. The outputs 116 also include a status of
block mode elements of configuration blocks specified within
the field devices 112.

The process control system 104 also includes an 1/O card
118 (e.g., one or more I/O cards) to receive data from the field
devices 112 and convert the data into communications
capable of being processed by the example controller 108.
Likewise, the I/O card 118 may convert data or communica-

20

40

45

55

8

tions from the controller 108 into a data format capable of
being processed by the corresponding field devices 112.

The example controller 108 of FIG. 1 may be language
neutral and operate one or more control routines (e.g., process
control algorithms, functions, and/or instructions) to manage
the field devices 112 within the process control system 104.
The control routines calculate runtime data based on the
outputs 116 from the field devices 112 for applications
including, for example, monitoring applications, alarm man-
agement applications, process trending and/or history appli-
cations, diagnostic applications, batch processing and/or
campaign management applications, statistical applications,
streaming video applications, advanced control applications,
safety instrumented applications, event applications, etc. The
applications also include status and/or mode applications.
The controller 108 forwards runtime data to the workstation
106 and/or any other process control database and/or proces-
sor (not shown) at periodic intervals and/or upon processing
or generating the runtime data. The runtime data transmitted
by the controller 108 may include process control values, data
values, alarm information, text, block mode element status
information, diagnostic information, error messages, param-
eters, events, and/or device identifiers.

Additionally, the control routines may generate runtime
data (e.g., process control information) that may be utilized
by the workstation 106 and/or other workstations within the
process control system 104. In some instances, the runtime
data may be stored within the controller 108 and/or a runtime
data cache within the process control system 104. In other
instances, the runtime data may be transmitted by the con-
troller 108 to a database that links, writes and/or stores the
runtime data to control parameters.

To store definitions of configuration blocks for the field
devices 112, the example process control environment 100
includes a device descriptor database 120. The example
device descriptor database 120 is communicatively coupled
to the workstation 106 via the LAN 110. In other examples,
the device descriptor database 120 may be included within the
workstation 106 and/or included within other workstations
(not shown) associated with the process control environment
100. In yet other examples, each of the workstations within
the process control environment 100 may include a local
version of the device descriptor database 120. These local
versions may be updated with device definition files periodi-
cally. In this manner, the interface processor 102 may access
the locally stored device descriptor database 120 without
using the LAN 110 (e.g., when the workstation 106 is oftline).

The example interface processor 102 accesses the device
descriptor database 120 to determine how statuses of block
mode elements are combined to calculate a mode of a con-
figuration block. In examples where the field devices 112
include components, the interface processor 102 accesses the
device descriptor database 120 to determine how modes of
configuration blocks are combined to calculate a mode of a
component of the field devices 112. Further, the interface
processor 102 accesses the device descriptor database 120 to
determine how modes of components are combined to calcu-
late a mode of a field device within the field devices 112.
Alternatively, the interface processor 102 accesses the device
descriptor database 120 to determine how modes of configu-
ration blocks are combined to calculate a mode of a field
device. Additionally, the interface processor 102 may access
the device descriptor database 120 for a file that defines
modes of the process control system 104. The interface pro-
cessor 102 uses the system-level file to determine how the
modes of the field devices 112 are combined to calculate a
mode and/or a status of the process control system 104.

US 9,342,072 B2

9

For each type of configuration block, the example device
descriptor database 120 may include, for example, a device
definition file (e.g., a device description file) that defines
possible modes of the configuration block based on possible
combinations of statuses of block mode elements. When the
interface processor 102 is to display a mode of a configuration
block, the interface processor 102 parses runtime data from
the controller 108 for process control status information that
includes statuses of block mode elements associated with the
configuration block. The interface processor 102 then
accesses the device descriptor database 120 to determine a
mode of the configuration block based on the received sta-
tuses of the block mode elements. The interface processor
102 may then display the mode of the configuration block
within applications displayed by the user interface 107.

Upon calculating modes of configuration blocks, the inter-
face processor 102 may calculate modes of components of the
field devices 112 based on definitions of the components
within the device descriptor database 120. For example, a
device definition file may indicate that a temperature sensor
component TSO1 has a functional configuration block with an
identifier of FCO5 and a transducer configuration block
within an identifier of TC72. The interface processor 102 uses
the calculated mode of the FCO5 functional configuration
block and the TC72 transducer configuration block to deter-
mine the mode of the TS01 component based on a definition
of the mode within a device definition file. The interface
processor 102 may then display the mode of the TSO1 com-
ponent within the user interface 107.

The device definition files that specify modes of configu-
ration blocks may be determined by manufacturers of the field
devices 112. The definitions may be based on industry stan-
dards (e.g., the Foundation Fieldbus™ protocol) and/or stan-
dards defined for the process control environment 100. Gen-
erally, the device definition files are stored in a read-only
format within the device descriptor database 120. In some
examples, process control personnel may edit and/or modify
device definition files based on changes to the field devices
112.

In other examples, the device descriptor database 120 may
include a routine and/or algorithm for calculating a mode of a
configuration block based on aggregating and/or combining
block mode elements. In this manner, the device descriptor
database 120 may utilize device definition files within a rou-
tine to determine a mode based on any number and/or types of
block mode elements. The interface processor 102 may also
determine which statuses of block mode elements are to be
combined based on runtime data from the controller 108. For
example, one of the field devices 112 may transmit status
process control information in a message that identifies the
field device, a component of the device, a configuration block
of'the component and statuses of block mode elements within
the configuration block. The interface processor 102 can use
the identification information within the message to identify
which block mode elements are associated with which con-
figuration block and aggregate and/or combine the corre-
sponding statuses to determine the mode of the configuration
block. In a similar manner, the interface processor 102 can
combine modes of configuration blocks to determine a mode
of a component and modes of components to determine a
mode of a field device.

A routine to calculate a mode of a configuration block may
include aggregating and/or combining block mode element
statuses. Because many block mode elements have industry
standardized definitions, a routine can be defined based on
those standardized definitions. For example, if all of the sta-
tuses are automatic and/or normal, the routine may be defined

10

15

20

25

30

35

40

45

50

55

60

65

10

to return a normal operating mode. In another example, if the
statuses of some element blocks are out-of-service and a
status of a normal element block is automatic and/or normal,
the routine may be defined to return a configuration and/or
calibration operating mode.

The example interface processor 102 may calculate modes
for all configuration blocks, components, and/or the field
devices 112 based on received runtime data from the control-
ler 108. In other examples, the interface processor 102 may
calculate modes only for configuration blocks, components,
and/or the field devices 112 displayed within the user inter-
face 107. For example, the interface processor 102 may deter-
mine that the user interface 107 is displaying a mode of a field
device. The example interface processor 102 calculates
modes for configuration blocks, components, and the field
device but may only display the mode of the field device.
Further, as the field devices 112 change, the interface proces-
sor 102 updates the modes of the configuration blocks, com-
ponents, and/or the field devices 112.

In addition to displaying modes of configuration blocks,
components, and/or the field devices 112, the example inter-
face processor 102 enables a user of the workstation 106 to
change an operating condition of a field device by selecting a
displayed mode. For example, the user interface 107 may
display a graphic with a mode that indicates that a FIC_101
field device is in service. The mode may be displayed as a
graphical icon that is colored green and is labeled with the text
‘In Service.” This mode may be based on a TCO02 transducer
configuration block having an in-service mode and a FC87
functional configuration block having an in-service mode. A
user may select the graphical icon and select an out-of-service
mode, thereby causing the interface processor 102 to change
the appearance of the graphical icon to red with a label ‘Out
of Service.” The interface processor 102 also accesses the
device descriptor database 120 for a device definition file for
the FIC_101 field device. The device definition file may indi-
cate that the FIC_101 field device can be placed in an out-of-
service mode by placing target block mode elements of the
TCO02 transducer configuration block and the FC87 functional
configuration block in an out-of-service status. As aresult, the
interface processor 102 changes the status of the target block
mode element to out-of-service by sending an instruction to
the FIC_101 field device via the controller 108. The FIC_101
field device receives the instruction and changes the statuses
of'the target blocks elements of the TC02 transducer configu-
ration block and the FC87 functional configuration block to
out-of-service. In this manner, a user is able to remove the
TIC_101 field device from service by selecting a graphical
icon. In many known systems, the user would have to identify
which of the block mode elements are required to be changed
and send individual instructions to each of the identified block
mode elements.

By enabling the user interface 107 to display a mode of the
field devices 112, components of the field devices 112, and/or
configuration blocks, the example interface processor 102
reduces a number of displayed graphics. By reducing the
number of graphics, thereby simplifying rendering of the user
interface 107, the example interface processor 102 enables
the user interface 107 to be displayed within different types of
web-based applications and/or applications operated by wire-
less devices. For example, with fewer graphics on the user
interface 107, a user may view modes of the field devices on
a relatively smaller screen of a wireless device. Additionally
or alternatively, a user may access the process control envi-
ronment 100 remotely via the Internet and view the modes of
the field devices in a Flash and/or Electronic Device Descrip-
tor Language (EDDL) file.

US 9,342,072 B2

11

The example interface processor 102 of the illustrated
example also manages the display of graphics based on pro-
cess control information received from the controller 108.
Graphics may include charts, gauges, graphs, menus, tabs,
data fields, indicators, tables, and/or any other graphical rep-
resentation of process control information. The process con-
trol information may include statuses of block mode elements
of configuration blocks, parameter information from the field
devices 112 and/or any other information that indicates which
objects of the field devices 112 are activated and/or available
(e.g., conditional device parameters). For example, normal
block mode elements may have a status that indicates if the
corresponding configuration block is available and/or acti-
vated. The interface processor 102 may identitfy the status in
normal block mode elements to determine which components
of the corresponding configuration blocks within a field
device are available and/or activated. The interface processor
102 may then remove and/or hide graphics within an appli-
cation displayed via the user interface 107 that are associated
with the deactivated and/or unavailable components. In addi-
tion to a mode of the component, the interface processor 102
may also remove and/or hide graphics in other types of appli-
cations that display functional process control information
(e.g., measured device values from the outputs 116 of the field
devices 112), alarm applications, event applications, etc.

The example interface processor 102 may also receive
instructions from process control personnel that indicate
which objects on the field devices 112 are activated and/or
available. The interface processor 102 may also use runtime
data received from the controller 108 and a device definition
file within the device descriptor database 120 to determine
that no status information is available for some block mode
elements of a component and/or configuration block. The
interface processor 102 may use the lack of status information
to infer that the configuration blocks and/or components are
unavailable and/or deactivated. The example interface pro-
cessor 102 may also receive device parameters (e.g., condi-
tional device parameters) from the field devices 112 that
indicate which of the objects are activated and/or available. In
some examples, unavailable and/or deactivated components
may be unlicensed for use in the process control environment
100 and/or deactivated because they are not needed within the
process control system 104.

By removing graphics associated with unused components
and/or configuration blocks, the example interface processor
102 makes applications displayed via the user interface 107
relatively more readable to a user. In this manner, a user is
presented with only relevant graphics that correspond to acti-
vated components. Further, by removing and/or hiding graph-
ics corresponding to unused components and/or configura-
tion blocks, the example interface processor 102 eliminates a
possibility that a user believes a graphic shows a component
that is broken instead of an unlicensed component. In other
words, a user may spend time trying to troubleshoot a com-
ponent that is intentionally deactivated.

FIG. 2 shows a functional block diagram of the example
interface processor 102 of FIG. 1. The example interface
processor 102 is shown including the device descriptor data-
base 120. In other example implementations, the device
descriptor database 120 may be external and communica-
tively coupled to the interface processor 102. To receive runt-
ime data from the controller 108 of FIG. 1, the example
interface processor 102 includes a controller interface 202.
The example controller interface 202 is communicatively
coupled to the controller 108 via the LAN 110.

The example controller interface 202 of the illustrated
example 202 receives runtime data generated by the control-

10

15

20

25

30

35

40

45

50

55

60

65

12

ler 108 and forwards the runtime data for processing. In some
examples, the controller interface 202 may periodically poll
the controller 108 for runtime data. In other examples, the
controller interface 202 may access a database that stores
runtime data. The runtime data received by the controller
interface 202 includes process control status information,
conditional parameters, and/or any other information that the
interface processor 102 may use to generate process control-
related graphics.

The example controller interface 202 also transmits mes-
sages from the interface processor 102 to the controller 108,
which then converts the messages into a format compatible
with the field devices 112. The messages may include instruc-
tions and/or commands to change one or more statuses of
block mode elements, thereby placing the field devices 112
into a specified operating condition. In some examples, the
controller interface 202 may queue the messages until the
controller 108 is available to receive the messages.

To queue and/or distribute the received runtime data, the
example interface processor 102 includes a runtime data
receiver 204. The example runtime data receiver 204 exam-
ines received runtime data for process control status informa-
tion and/or conditional parameters. The process control status
information is transmitted by the runtime data receiver 204 to
a block mode element parser 206. Additionally, the runtime
data receiver 204 determines field device identifiers, compo-
nent identifiers and/or configuration block identifiers within
the runtime data. The runtime data receiver 204 may then
transmit a message to a crossblock processor 207 with the
determined identifiers. Additionally, the runtime data
receiver 204 may forward other types of runtime data to
applications to display corresponding graphics.

The example runtime data receiver 204 may also queue
messages for the crossblock processor 207 until the cross-
block processor 207 is available. Further, the example runt-
ime data receiver 204 may queue process control status infor-
mation until the block mode element parser 206 is available to
process the status information. In other examples, the runtime
data receiver 204 forwards all received runtime data to the
appropriate functional block.

To parse and/or filter the process control status informa-
tion, the example interface processor 102 includes the block
mode element parser 206. The example block mode element
parser 206 examines process control status information for-
warded by the runtime data receiver 204 for identifiers of the
field devices 112, components of the field devices 112, con-
figuration blocks of the components, and/or block mode ele-
ments of the configuration blocks. In examples where a
device definition file exists, the block mode element parser
206 locates statuses of block mode elements and forwards
these statuses to a mode calculator 208. The block mode
element parser 206 may locate the statuses of the block mode
elements within runtime data based on identifiers of the block
mode elements. Further, the example block mode element
parser 206 may request any additional statuses of block mode
elements that may be processed and/or stored within the
workstation 106 and/or any other processor of the process
control system 104. In this manner, the block mode element
parser 206 accumulates status information that is not gener-
ated and/or processed by the controller 108 but is needed to
calculate a mode of a configuration block, a component,
and/or a field device.

The block mode element parser 206 of FIG. 2 determines
relationships between block mode elements, configuration
blocks, components, and/or field devices in examples when a
device definition file is unavailable and/or in examples when
the interface processor 102 calculates a mode based on a

US 9,342,072 B2

13

routine and/or algorithm. To determine these relationships,
the block mode element parser 206 may use locations of the
identifiers with a message that includes runtime data. For
example, status information for a field device may be trans-
mitted as a series of messages, with a first message for a first
component and a separate second message for a second com-
ponent. Each of the messages may be internally partitioned
based on status information regarding configuration blocks
that are included with the component. Further, statuses of
block mode elements may be ordered within the message to
coincide with an associated configuration block. The block
mode element parser 206 may use these relationships within
the message to determine the relationship between the block
mode elements, configuration blocks, components, and/or
field devices and transmit the relationship information to the
mode calculator 208.

The example crossblock processor 207 of FIG. 2 uses a
message with identifier(s) from the runtime data receiver 204
to access the device descriptor database 120 for a device
definition file. The device definition file may correspond to
the process control system 104, the field devices 112, a field
device within the field devices 112, a component of a field
device, and/or a configuration block of a component and/or a
field device. A device definition file may also indicate which
mode is to be displayed as a graphic. For example, a device
definition file for a field device may indicate that graphics are
to be displayed showing a mode of the field device and modes
of components of the field device.

Upon receiving the identifier(s), the example crossblock
processor 207 accesses the device descriptor database 120 to
determine which of the identifier(s) has a corresponding
device definition file. For example, identifiers of configura-
tion blocks and components may each correspond to a device
definition file or, alternatively, a single device definition file
may exist for a field device. In examples where the crossblock
processor 207 locates multiple device definition files for a set
of'identifiers, the crossblock processor 207 aggregates and/or
combines the files and transmits the files to the mode calcu-
lator 208. In other examples where there is only a single
device definition file for one or more identifiers, the cross-
block processor 207 sends the file to the mode calculator 208.

The example mode calculator 208 of the illustrated
example uses statuses of block mode elements to determine
modes of configuration blocks, components, field devices
and/or the process control system 104. The mode calculator
208 may also use relationship information and/or device defi-
nition file(s) to determine which of the modes are to be dis-
played as graphics. Upon determining mode(s), the example
mode calculator 208 assigns the mode to the graphic(s) to be
displayed. The example mode calculator 208 then transmits
the mode(s) and the corresponding graphic assignment to a
renderer 210 for display within one or more applications via
the user interface 107 of FIG. 1.

In examples where modes are calculated based on an algo-
rithm and/or routine, the mode calculator 208 uses relation-
ship information identified by the block mode element parser
206 to determine which statuses of block mode elements are
to be combined and/or aggregated. The mode calculator 208
may then use instructions with an algorithm and/or routine to
determine a mode. For example, the mode calculator 208 may
receive a status of three block mode elements (e.g., a target, an
actual, and a normal block mode element) that are used to
determine a mode of a configuration block. The instructions
may indicate that if the status of the target block mode ele-
ment does not match the status of the actual block mode
element, the configuration block is in an error mode. In
another example, the instructions may indicate that if the

20

30

40

45

50

14

target, actual, and normal block mode elements have an out-
of-service status, then the configuration block is in a deacti-
vated, unused, and/or unlicensed mode. Alternatively, the
instructions may indicate that the configuration block is in a
configuration mode if the normal block mode element has an
automatic status and the actual and target block mode ele-
ments have an out-of-service status. In another example, the
mode calculator 208 may include instructions that specify
that if all configuration blocks included within a field device
and/or component are in a normal operating mode, then the
field device and/or the component has a normal operating
mode.

Additionally, the example mode calculator 208 uses device
definition files to calculate modes. The mode calculator 208
uses a device definition file to determine which statuses of
block mode elements are grouped together as a mode of a
configuration block. The example mode calculator 208 may
also use a device definition file to determine which modes of
configuration blocks are grouped together to identify a mode
of'a component and/or a field device. Further, the mode cal-
culator 208 uses a device definition file to determine which
modes of components are grouped together to identify amode
of a field device. Additionally, the mode calculator 208 may
use a device definition file to determine which modes of field
devices are grouped together to identify amode of the process
control system 104. In some examples, a device definition file
may indicate that a mode of a field device is based on statuses
of' block mode elements. In these examples, the mode calcu-
lator 208 groups the statuses of block mode elements to
determine a mode for the corresponding field device.

To calculate a mode based on statuses of block mode ele-
ments, the example mode calculator 208 of FIG. 2 may use a
table and/or information (e.g., predetermined modes) within
a device definition file that specifies a mode based on a com-
bination of block mode element statuses. An example of a
table is shown and described below in conjunction with FIG.
4. In some examples, the table and/or information may be
generic for all types of configuration blocks. Alternatively,
each type of configuration block for each component and/or
field device may have a table and/or information. The
example mode calculator 208 compares the statuses for the
block mode elements associated with the configuration block
to identify a mode. The mode calculator 208 may determine
modes for all configuration blocks associated with a compo-
nent, and then determine a mode of the component. The mode
of'a component may be defined based on modes of associated
configuration blocks. Alternatively, the mode of a component
may be based on statuses of block mode elements within
configuration blocks associated with the components.

The example mode calculator 208 continues calculating
modes until all specified modes are determined. In some
examples, the mode calculator 208 may calculate modes for
configuration blocks, components, and/or field devices asso-
ciated with identifiers received by the interface processor 102
from the controller 108. In other examples, the block mode
element parser 206 and/or the mode calculator 208 may deter-
mine which graphics are displayed within the user interface
107. In these other examples, the mode calculator 208 deter-
mines modes for configuration blocks, components, and/or
field devices associated with the displayed graphics. In yet
other examples, the mode calculator 208 determines modes
for configuration blocks, components, and/or field devices
based on instructions from process control personnel.

To display modes, the example interface processor 102
includes the renderer 210. The example renderer 210 receives
modes from the mode calculator 208. Each mode includes an
identifier indicating a configuration block, component, and/

US 9,342,072 B2

15

or field device that the mode represents. The renderer 210
may also receive graphic information indicating which of the
modes are to be displayed within which graphics. To display
a mode as a graphic, the renderer 210 uses an identifier
associated with the mode to select a graphic template. For
example, the renderer 210 may select a first type of graphic
for configuration blocks, a second type of graphic for com-
ponents, and a third type of graphic for field devices. In other
examples, the renderer 210 may select a graphic based on a
type of a mode. In these examples, the same type of graphic
may be displayed by the renderer 210 for configuration
blocks that have similar modes. Further, the renderer 210 may
select a graphic based on a type of the component and/or field
device. For example, a sensor component may have a mode
displayed within a sensor type of graphic while a valve field
device may have mode displayed within a valve type of
graphic. The renderer 210 may select a graphic from a data-
base and/or may use instructions within a device definition
file that describe how a graphic is to be generated.

The example renderer 210 also uses a device definition file
associated with a configuration block, component, and/or
field device to select which application and/or template to
display the graphic. For example, a device definition file may
instruct the renderer 210 to display a mode graphic for a valve
controller field device within an application that shows status
and process control values. Alternatively, the renderer 210
may receive information from the block mode element parser
206 and/or the mode calculator 208 indicating which graphic
is to be displayed within which application.

The example renderer 210 may also select a graphic based
on a type of the mode. For example, an out-of-service mode
may be displayed by the renderer 210 as a first type of graphic
while a normal mode may be displayed as a second type of
graphic. Upon selecting a graphic for each of the modes and
determining an application to display the graphic, the ren-
derer 210 transmits the graphic for display in an appropriate
application via the user interface 107.

Additionally, the example renderer 210 may couple (e.g.,
link) functionality to a graphic. The functionality may include
a set of instructs that execute a method to display a selectable
list of possible modes of a configuration block, component,
and/or field device represented by the graphic. The renderer
210 may receive a list from the mode calculator 208. In other
example, the renderer 210 may determine possible modes
based on a device definition file stored in the device descriptor
database 120. Alternatively, process control personnel may
provide the renderer 210 with list(s) of possible modes of
configuration blocks, components and/or field devices. In
some examples, the list may include a numerical, textual,
Boolean, etc. field. In this manner, a user may enter a value
and/or a desired mode instead of selecting from a list of
possible modes.

To communicate with applications within a user interface
(e.g., the user interface 107), the interface processor 102 of
FIG. 2 includes an application interface 212. The application
interface 212 forwards graphics from the renderer 210 to an
appropriate application displayed by the user interface 107.
The application interface 212 may select the application
based on information from the renderer 210 and send an
instruction from the application to display the graphic. The
information may include a location on an application where a
graphic is to be displayed and/or any additional formatting
information.

The example application interface 212 also receives
instructions from applications within the user interface 107.
These instructions may instruct the interface processor 102
and/or the controller 108 to configure a configuration block, a

20

40

45

55

16

component, and/or a field device in a specified (e.g., desired)
mode. A user may select and/or enter a desired mode via a
graphic generated by the renderer 210. In other examples, a
user may select a desired mode and/or enter a desired mode
via a field within an application displayed by the user inter-
face 107. By enabling a user to select and/or enter a desired
mode for a configuration block, a component, and/or a field
device, the example interface processor 102 changes statuses
of block mode elements needed to place the configuration
block, component, and/or field device into the desired mode.
In this manner, a user only provides the desired mode and the
interface processor 102 determines which statuses of which
element blocks are needed to be changed and communicates
this information to the controller 108.

Upon receiving an instruction to change a mode, the appli-
cation interface 212 forwards the instruction to a selection
receiver 214. The example selection receiver 214 processes
the instruction for a mode selector 216. Processing the
instruction may include queuing the instruction until the
mode selector 216 is available. Processing the instruction
may include parsing the instruction into separate individual
instructions if the instruction includes multiple instructions.

To determine which statuses of block mode elements
should be changed based on a selected desired mode, the
example mode selector 216 accesses the device descriptor
database 120 for a device definition file. The mode selector
216 uses the device definition file to match the desired mode
selected by a user to statuses of block mode elements. For
example, the mode selector 216 may receive an instruction
that a user selected a configuration block to change from an
in-service mode to an out-of-service mode. The mode selec-
tor 216 identifies block mode elements that are associated
with the configuration block and uses a device definition file
to determine which statuses to change for each of the block
mode elements to cause the configuration block to operate in
the desired mode. In another example, a user may select to
change a mode of a field device from a normal operation
mode to a calibration mode. The mode selector 216 accesses
a device definition file associated with the field device and
determines modes of components and/or configuration
blocks that need to be changed to cause the field device to
operate in the calibration mode. The mode selector 216 may
then determine which statuses of block mode elements are to
be changed to cause the configuration blocks and/or compo-
nents to operate in a mode that causes the field device to
operate in the calibration mode. Alternatively, the mode
selector 216 may use the device definition file to identify
which statuses of block mode elements to change to cause the
field device to operate in the calibration mode.

Upon determining which block mode element statuses to
change, the example mode selector 216 transmits a message
to the controller 108 via the controller interface 202. The
message identifies the block mode elements within the field
device and identifies a status for the block mode elements.
Upon receiving the message, the controller 108 generates an
instruction to the field device to change the statuses of the
specified block mode elements to the specified statuses.
Changing the statuses of the block mode elements causes the
field device, components of the field device, and/or configu-
ration blocks to operate in the specified mode.

To determine which graphics to display based on available
and/or activated components, configuration blocks, and/or
field devices, the example interface processor 102 of the
illustrated example includes a conditional graphic manager
218. The example conditional graphic manager 218 receives
runtime data from the controller 108 via the controller inter-
face 202 and the runtime data receiver 204. In some examples,

US 9,342,072 B2

17

the block mode element parser 206 may parse the runtime
data for condition device parameters. In these examples, the
conditional graphic manager 218 uses the conditional param-
eters (e.g., conditional device parameters) to identify which
components, configuration blocks, and/or field devices are
activated and/or available. For example, some field devices
may have a data block that defines which features, functions,
components, and/or configuration blocks are licensed and/or
activated. These field devices may transmit a periodic mes-
sage and/or transmit a message upon a request from the inter-
face processor 102 that includes values from the data block
indicating which features, functions, components, and/or
configuration blocks (e.g., objects) are licensed and/or acti-
vated.

In other examples, the block mode element parser 206 may
forward to the conditional graphic manager 218 process con-
trol status information. In these other examples, the condi-
tional graphic manager 218 may use the status information to
determine which components, and/or configuration blocks
within a field device are activated and/or available. In some
other examples, the conditional graphic manager 218 may
access an activation database 220 to determine which com-
ponents, configuration blocks, and/or field devices are acti-
vated and/or available. The activation database 220 may be
updated by process control personnel based on which fea-
tures, functions, components, configuration blocks, and/or
field devices are in use (e.g., licensed for use) within the
process control system 104. The activation database 220, as
well as the device descriptor database 220, may be imple-
mented by Electronically Erasable Programmable Read-
Only Memory (EEPROM), Random Access Memory
(RAM), Read-Only Memory (ROM), and/or any other type of
memory.

The example conditional graphic manager 218 determines
which features, functions, components, and/or configuration
blocks are activated and/or available so that only graphics
associated with the activated items are displayed within cor-
responding applications via the user interface 107. The con-
ditional graphic manager 218 uses the conditional device
parameters and/or information from the activation database
220 to identify which items are activated and which items are
deactivated. The example conditional graphic manager 218
may also use status information to determine which items are
activated based on statuses of normal block mode elements
and/or a lack of a status. For example, statuses for normal
block mode elements of a configuration block may be out-of-
service indicating the configuration block is unavailable and/
or deactivated. The conditional graphic manager 218 may
also determine that if configuration blocks are unavailable
and/or deactivated, corresponding components may also be
deactivated and/or unavailable.

The example conditional graphic manager 218 determines
which features, functions, field devices, components, and/or
configuration blocks are available and sends an instruction to
the renderer 210 to display corresponding graphics. The
instructions may include an identifier of an item that the
renderer 210 can use to locate corresponding graphics that are
tagged with the same identifier. In many examples, the graph-
ics may include status information, data fields with process
control values, gauges, charts, tables, and/or any other graphi-
cal representations of process control information. Further,
the graphics may be displayed within multiple applications.

The example conditional graphic manager 218 also deter-
mines which features, functions, components, field devices,
and/or configuration blocks are unavailable and/or deacti-
vated. For these items, the conditional graphic manager 218
sends an instruction to the renderer 210 to remove and/or hide

10

15

20

25

30

35

40

45

50

55

60

65

18

graphics displayed within applications that correspond to the
deactivated items. Upon receiving an instruction with items to
remove and/or hide, the example renderer 210 searches appli-
cations for displayed graphic(s) with corresponding tags and/
or identifiers. The renderer 210 then removes the graphic(s)
from the application(s). In other examples, the renderer 210
may instruct one or more applications to hide the graphic(s).
In this manner, process control personnel are shown only
graphics that correspond to activated, licensed, and/or avail-
able process control features, functions, components, field
devices, and/or configuration blocks.

While the example interface processor 102 has been illus-
trated in FIG. 2, one or more of the servers, platforms, inter-
faces, data structures, elements, processes and/or devices
illustrated in FIG. 2 may be combined, divided, re-arranged,
omitted, eliminated and/or implemented in any way. Further,
the example controller interface 202, the example runtime
data receiver 204, the example block mode element parser
206, the example crossblock processor 207, the example
mode calculator 208, the example renderer 210, the example
application interface 212, the example selection receiver 214,
the example mode selector 216, the example conditional
graphic manager 218, the example activation database 220,
the example device descriptor database 120 and/or, more
generally, the example interface processor 102 may be imple-
mented by hardware, software, firmware and/or any combi-
nation of hardware, software and/or firmware. Thus, for
example, any of the example controller interface 202, the
example runtime data receiver 204, the example block mode
element parser 206, the example crossblock processor 207,
the example mode calculator 208, the example renderer 210,
the example application interface 212, the example selection
receiver 214, the example mode selector 216, the example
conditional graphic manager 218, the example activation
database 220, the example device descriptor database 120,
and/or more generally, the example interface processor 102
could be implemented by one or more circuit(s), program-
mable processor(s), application specific integrated circuit(s)
(ASIC(s)), programmable logic device(s) (PLD(s)) and/or
field programmable logic device(s) (FPLD(s)), etc.

When any apparatus claim of this patent is read to cover a
purely software and/or firmware implementation, at least one
of'the example controller interface 202, the example runtime
data receiver 204, the example block mode element parser
206, the example crossblock processor 207, the example
mode calculator 208, the example renderer 210, the example
application interface 212, the example selection receiver 214,
the example mode selector 216, the example conditional
graphic manager 218, the example activation database 220,
and/or the example device descriptor database 120 are hereby
expressly defined to include a computer readable medium
such as a memory, DVD, CD, etc. storing the software and/or
firmware. Further still, the example interface processor 102
may include one or more elements, processes and/or devices
in addition to, or instead of, those illustrated in FIG. 2, and/or
may include more than one of any or all of the illustrated
elements, processes and devices.

FIG. 3 shows a device status application 300 displayed via
the user interface 107 of FIG. 1 that includes a graphic indi-
cating a mode of a Device 01 field device. The device status
application 300 includes a status panel 302 and a navigation
panel 304. The example navigation panel 304 may be used by
a user to locate status information regarding the Device 01
field device. The status panel 302 displays graphics indicating
mode(s) and/or diagnostic information regarding the Device
01 field device. The example renderer 210 may identify the
status panel 302 as a location to display graphics indicating

US 9,342,072 B2

19

modes of field devices, components, and/or configuration
blocks. Specifically, the status panel 302 includes a diagnos-
tic graphic 306 and a mode graphic 308. The diagnostic
graphic 306 displays diagnostic errors associated with the
Device 01 field device. In this example, the diagnostic graphic
306 indicates that the Device 01 field device does not have any
errors (e.g., via the Good mode). In other examples, the diag-
nostic graphic 306 may show a Failed mode to indicate one or
more errors. The diagnostic graphic 306 may also show an
Advisory mode and/or a Maintenance mode.

The example mode graphic 308 shows a mode of the
Device 01 field device. In this example, the mode graphic 308
indicates that the Device 01 field device is in an in-service
mode. In some examples, the mode graphic 308 may be
displayed in one or more colors representative of an in-ser-
vice mode. The example mode graphic 308 is generated by
the example interface processor 102 of FIGS. 1 and 2. In this
example, the interface processor 102 identifies statuses of
block mode elements associated with the Device 01 field
device and calculates modes for any corresponding configu-
ration blocks and/or components. The example interface pro-
cessor 102 then calculates the in-service mode based on cal-
culated modes of the configuration blocks and/or the
components. The interface processor 102 may access a device
definition file associated with the Device 01 field device to
determine the modes and/or to determine that only the mode
of the Device 01 field device is to be displayed at the mode
graphic 308 (e.g., modes of configuration blocks and/or com-
ponents are not to be displayed as graphics).

By the example mode graphic 308 displaying a mode of the
Device 01 field device, a user does not have to search for
graphics of statuses of block mode elements to determine the
mode. Additionally, because block mode element statuses are
not shown, the device status application 300 has fewer graph-
ics to display. With fewer displayed graphics, the device
status application 300 is relatively easier to view.

A user may select the Change icon within the mode graphic
308 to view a list of possible modes for the Device 01 field
device. Selecting the change icon causes the interface proces-
sor 102 to execute instructions within the device definition
file that toggles the possible modes of the Device 01 field
device. The user may then select one of the possible modes
causing the example interface processor 102 to determine
which statuses of block mode elements to change to have the
Device 01 field device operate in the selected mode. Alterna-
tively, the Change icon may only enable a user to select
between two different modes. Upon selecting a different
mode, the interface processor 102 may change the mode
graphic 308 to represent the selected mode. Alternatively, the
interface processor 102 may change the mode graphic 308 to
an intermediate graphic while the Device 01 field device is
changed to the desired mode. Then, when the interface pro-
cessor 102 determines that the Device 01 field device is oper-
ating in the desired mode, the interface processor 102 may
change the mode graphic 308 to reflect the Device 01 field
device is operating in the desired mode.

The example device status application 300 includes an
information panel 310 that displays process control output
information from the Device 01 field device. In this example,
the output information is a pressure from a pressure sensor
component that is displayed within a gauge graphic 312.
Additionally, the information panel 310 includes an indicator
graphic 314 to indicate if the pressure displayed within the
gauge graphic 312 exceeds a limit and/or threshold. The
device status application 300 also includes a device options
panel 316 that includes functions a user may select to view
additional information regarding the Device 01 field device.

10

25

30

40

45

55

20

FIG. 4 shows an example table 400 of possible configura-
tion block modes based on statuses of block mode elements.
The example table may be a device definition file stored
within the device descriptor database 120 of FIGS. 1 and/or 2.
In other examples, the table 400 may be combined with other
tables for other configuration blocks and/or modes of those
configuration blocks to show mode(s) of components and/or
a field device. In these other examples, the table 400 may be
a standard table for any type of configuration block or, alter-
natively, may be specifically for a type of configuration block
(e.g., a transducer configuration block). In yet other
examples, the table 400 may be representative of instructions
executed by an algorithm and/or routine within the mode
calculator 208 to determine a mode of a configuration block.

The example table 400 may be specified by process control
personnel, manufacturers of a device that includes a configu-
ration block, and/or process control designers. In the example
table 400 of the illustrated example, the mode of the configu-
ration block is based on a status of a target block mode
element, a status of an actual block mode element, and a status
of'a normal block mode element. In other examples, the table
400 may include additional or fewer block mode elements. In
the example of FIG. 4, if the target block mode element, the
actual block mode element, and the normal block mode ele-
ment each have respective statuses of automatic, the configu-
ration block is in a normal mode. The normal mode may
indicate that the status of the target block mode element
matches the status of the actual block mode element indicat-
ing that the configuration block is operating in a mode speci-
fied by a user. If these statuses match the status of the normal
block mode element, the mode of the configuration block is a
normal mode because the normal block mode element indi-
cates a mode that the configuration block should be operating
in under normal conditions specified by a user.

In an example, if the configuration block is available, acti-
vated, and/or licensed, a user may set the status of the normal
block mode element to automatic. Thus, if the status of the
actual block mode element or the target block mode element
changes from automatic, the mode of the configuration block
changes. Alternatively, if the configuration block is unavail-
able, deactivated, and/or not licensed, a user may set the status
of the normal block mode element to out-of-service (OOS).
The mode of the configuration block is ‘not used’ if the
statuses of the target and the actual block mode elements are
out-of-service because the configuration block is deactivated
and/or unlicensed. Further, the conditional graphic manager
218 (FIG. 2) may use the out-of-service status of the normal
block mode element to determine if a graphic for the mode of
the configuration block should be displayed.

FIG. 5 shows a functional diagram 500 of the interface
processor 102 of FIGS. 1 and 2 calculating a mode of a
component and/or a field device based on statuses of block
mode elements. In this example, the interface processor 102
receives statuses from Block mode element 1 and Block mode
element 2 within a resource configuration block 502 and a
status from Block mode element 3 within a transducer con-
figuration block 504. The configuration blocks 502 and 504
are included within a field device 505. In other examples, the
configuration blocks 502 and 504 may be included within a
component within the field device 505.

Upon receiving the statuses, the mode calculator 208
within the interface processor 102 of the illustrated example
accesses a device definition file and/or uses a routine to per-
form a calculation 506 to determine a mode of the field device
505. The calculation 506 in this example includes determin-
ing if the status of the Block mode element 1 is automatic
(block 508), determining if the status of the Block mode

US 9,342,072 B2

21

element 2 is automatic (block 510), and determining if the
status of the Block mode element 3 is automatic (block 512).
In other examples, the calculation 506 may include accessing
adevice definition file similar to the table 400 of FIG. 4. In yet
other examples, the calculation 506 may include determining
amode of the resource configuration block 502 and a mode of
the transducer configuration block 504, then using the deter-
mined modes to calculate a mode of the field device 505.

In the example of FIG. 5, if the Block mode elements 1-3
each have a status of automatic, the example interface pro-
cessor 102 (e.g., via the renderer 210) displays an ‘In Service’
graphic 514 within an application. However, if any of the
Block mode elements 1-3 does not have an automatic status,
then the example interface processor 102 displays a ‘Not In
Service’ graphic 516. In other examples, the interface proces-
sor 102 may display other graphics based on the statuses of
the Block mode elements 1-3.

FIG. 6 shows the device status application 300 including
the status panel 302, the navigation panel 304, the informa-
tion panel 310, and the device options panel 316 of FIG. 3.
The device status application 300 of FIG. 6 also includes a
second gauge graphic 602 located within the information
panel 310 adjacent to the gauge graphic 312. A second indi-
cator graphic 604 is also displayed to indicate if a mass flow
of a valve displayed within the second gauge graphic 602
exceeds a limit and/or threshold.

The example interface processor 102 enables a user to view
process control information generated by the pressure sensor
component (e.g., via the gauge graphic 312) and the mass
flow component (e.g., via the second gauge graphic 602). The
pressure sensor component and the mass flow component are
included within the Device 01 field device. A user may take
the pressure sensor component and the mass flow component
out of service concurrently by selecting the Change icon
within the mode graphic 308.

The second gauge graphic 602 is displayed by the example
interface processor 102 based on conditional parameter(s)
received from the Device 01 field device. Alternatively, the
interface processor 102 may determine from statuses of nor-
mal block mode elements associated with a mass flow com-
ponent of the Device 01 field device that the mass flow com-
ponent has been activated and/or licensed. In response to the
conditional parameter(s) and/or the normal block mode ele-
ment statuses, the interface processor 102 determines that the
second gauge graphic 602 should be displayed within the
device status application 300.

FIGS. 7 and 8 show another example of the interface pro-
cessor 102 of FIGS. 1 and 2 displaying a graphic based on
conditional parameter(s) and/or statuses of normal block
mode elements. These figures show an application 700 dis-
played via the user interface 107 with a navigation panel 702
and a process control information panel 704. A user may
locate the process control information panel 704 via the navi-
gation panel 702. In this example, a user selects to view
manual setup process control information for the Device 01
field device.

In FIG. 7, the interface processor 102 detects only the
activation and/or licensing of the pressure sensor component.
However, in FIG. 8, the interface processor 102 detects the
activation and/or licensing of the mass flow component. This
is depicted by the interface processor 102 displaying a tab
(i.e., the Mass Flow tab and/or menu) to setup process control
information for the mass flow component within the process
control panel 704. Thus, the example interface processor 102
may display menu graphics that include fields for entering
process control information upon determining that a corre-
sponding component, feature, function, and/or configuration

5

10

15

20

25

30

35

40

45

50

55

60

65

22

block is available, activated, and/or licensed. Further, by only
showing the Mass Flow tab when the component is active, a
user may only select the tab when the mass component is
available to be setup. In this manner, the example interface
processor 102 does not display any unused or deactivated
components, features, functions, and/or configuration blocks
to reduce a number of graphics displayed to a user.

FIG. 9 shows a functional diagram 900 of the interface
processor 102 of FIGS. 1 and 2 determining which objects
within a field device 902 are activated and/or available to
display corresponding graphics. In this example, the interface
processor 102 receives status information and/or conditional
parameter(s) from the field device 902. The status informa-
tion and/or conditional parameter(s) indicate that the field
device 902 includes Object 1 and Object 2. In other examples,
the status information and/or conditional parameter(s) (and/
orany other display or functional information associated with
the Object 1 and/or the Object 2) may be specified within an
EDDL file stored within the interface processor 102 and/or a
device communicatively coupled to the interface processor
102 (e.g., the workstation 106 of FIG. 1). The Object 1 and/or
the Object 2 may refer to components, configuration blocks,
block mode elements, parameters, features, and/or functions
associated with the field device 902.

The example interface processor 102 (e.g., the conditional
graphic manager 218) performs a determination 904 as to
which graphics to display. The determination 904 includes a
check to determine if the Object 1 is licensed (block 906) and
a check to determine if the Object 2 is licensed (block 908).
The interface processor 102 may determine if the Objects 1
and 2 are licensed based on information within the activation
database 220. Alternatively, the interface processor 102 may
examine statuses of normal block mode elements associated
with the Objects 1 and 2. In other examples, the interface
processor 102 may determine if the Objects 1 and 2 are
activated and/or available. Further, the interface processor
102 may determine if additional components, configuration
blocks, and/or field devices are available, activated, and/or
licensed.

In the example of FIG. 9, if the Object 1 is licensed, the
interface processor 102 displays graphics associated with the
Object 1 within applications via the user interface 107 (block
910). However, if the Object 1 is not licensed, the interface
processor 102 does not display graphics associated with the
Object 1 within applications (block 912). In some examples,
the interface processor 102 may instruct the applications to
remove and/or hide graphics associated with the Object 1.
Similarly, if the Object 2 is licensed, the interface processor
102 displays graphics associated with the Object 2 within
applications via the user interface 107 (block 914). However,
ifthe Object 2 is not licensed, the interface processor 102 does
not display graphics associated with the Object 2 within
applications (block 916).

Flowcharts representative of example processes 1000,
1100, and 1200 for implementing the interface processor 102
of FIGS. 1-2 are shown in FIGS. 10A,10B, 11, and 12. In this
example, the processes 1000, 1100, and 1200 may be imple-
mented using the machine readable instructions in the form of
a program for execution by a processor such as the processor
P12 shown in the example processor system P10 discussed
below in connection with FIG. 13. The program may be
embodied in software stored on a computer readable medium
such as a CD-ROM, a floppy disk, a hard drive, a digital
versatile disk (DVD), or a memory associated with the pro-
cessor P12, but the entire program and/or parts thereof could
alternatively be executed by a device other than the processor
P12 and/or embodied in firmware or dedicated hardware.

US 9,342,072 B2

23

Further, although the example program is described with
reference to the flowcharts illustrated in FIGS. 10A, 10B, 11,
and 12, many other methods of implementing the example
interface processor 102 may alternatively be used. For
example, the order of execution of the blocks may be
changed, and/or some of the blocks described may be
changed, eliminated, or combined.

As mentioned above, the example processes of FIGS. 10A,
10B, 11, and 12 may be implemented using coded instruc-
tions (e.g., computer readable instructions) stored on a tan-
gible computer readable medium such as a hard disk drive, a
flash memory, a read-only memory (ROM), a compact disk
(CD), a digital versatile disk (DVD), a cache, a random-
access memory (RAM) and/or any other storage media in
which information is stored for any duration (e.g., for
extended time periods, permanently, brief instances, for tem-
porarily buffering, and/or for caching of the information). As
used herein, the term tangible computer readable medium is
expressly defined to include any type of computer readable
storage and to exclude propagating signals. Additionally or
alternatively, the example processes of FIGS. 10A, 10B, 11,
and 12 may be implemented using coded instructions (e.g.,
computer readable instructions) stored on a non-transitory
computer readable medium such as a hard disk drive, a flash
memory, a read-only memory, a compact disk, a digital ver-
satile disk, a cache, a random-access memory and/or any
other storage media in which information is stored for any
duration (e.g., for extended time periods, permanently, brief
instances, for temporary buffering, and/or for caching of the
information). As used herein, the term non-transitory com-
puter readable medium is expressly defined to include any
type of computer readable medium and to exclude propagat-
ing signals.

The example process 1000 of FIGS. 10A and 10B displays
a mode of component(s), configuration block(s) and/or field
device(s) based on received process control status informa-
tion. The example process 1000 of FIG. 10A begins by receiv-
ing statuses of block mode elements associated with a field
device (e.g., via the runtime data receiver 204) (block 1002).
The block mode element may also correspond to a configu-
ration block within a component associated with the field
device. The example process 1000 then accesses the device
descriptor database 120 for a device definition file associated
with the field device (e.g., via a crossblock processor 210)
(block 1004). In other examples, the process 1000 may use an
algorithm and/or a routine instead of a device definition file to
determine a mode of a field device, component, and/or con-
figuration block.

The example process 1000 then determines graphic(s) dis-
played within application(s) via the user interface 107 (e.g.,
via the block mode element parser 206 and/or the mode
calculator 208) (block 1006). The example process 1000 also
parses statuses of block mode elements from other process
control information received as runtime data (e.g., via the
block mode element parser 206) (block 1008). The example
process 1000 may also locate identifiers associated with the
block mode elements, configuration blocks, and/or the field
device. The example process 1000 next determines a mode of
each identified configuration block based on statuses of cor-
responding block mode elements (e.g., via the mode calcula-
tor 208) (block 1010). To determine the mode, the example
process 1000 uses the device definition file or, alternatively,
uses instructions within an algorithm and/or routine.

The example process 1000 then determines if the deter-
mined mode for each of the configuration blocks is to be
displayed as a graphic (e.g., via the mode calculator 208)
(block 1012). For each of the modes of the configuration

10

15

20

25

30

35

40

45

50

55

60

65

24

blocks that are to be displayed as graphics, the example pro-
cess 1000 displays the modes as graphics within one or more
corresponding applications via the user interface 107 (e.g.,
viathe renderer 210) (block 1014). The example process 1000
then determines if the configuration blocks are associated
with a component (e.g., via the mode calculator 208) (block
1016). Additionally, for each of the modes of the configura-
tion blocks that are to be displayed as graphics (block 1012),
the example process 1000 determines if the configuration
blocks are associated with a component (block 1016). In other
examples, the example process may calculate modes of com-
ponents, and/or a field device upon determining modes of
configuration blocks.

If the configuration blocks are associated with at least one
component, the example process 1000 determines a mode of
the component(s) based on modes of the corresponding con-
figuration blocks (e.g., via the mode calculator 218) (block
1018). In other examples, the process 1000 may determine
modes of the component(s) based on statuses of correspond-
ing block mode elements. The example of process 1000 of
FIG. 10B then determines if a graphic of the mode of each of
the component(s) is to be displayed (e.g., via the mode cal-
culator 218) (block 1020). For each of the components that is
to be displayed as a graphic, the example process 1000 dis-
plays a mode for each of the components as a graphic within
an application (e.g., via the renderer 210) (block 1022). The
example process 1000 then determines a mode of the field
device (block 1024). Additionally, if the example process of
FIG. 10A determines that there are no configuration blocks
associated with at least one component (block 1016), or if
modes of the component(s) are not to be displayed as
graphic(s) (block 1020), the example process 1000 of FIG.
10B determines a mode of the field device (block 1024).

The example process 1000 of the illustrated example con-
tinues by displaying a mode of the field device as a graphic
within an application (e.g., via the renderer 210) (block
1026). In some examples, the process 1000 may determine if
a graphic is to be displayed for a mode of the field device. The
example process 1000 then determines if there is a mode
graphic associated with the process control system 104 (e.g.,
via the mode calculator 208) (block 1028). If there is a mode
graphic for the process control system, the example process
1000 determines if modes are calculated for all field devices
within the process control system (e.g., via the mode calcu-
lator 208) (block 1030).

If modes of the field devices are determined, the example
process 1000 determines a mode of the process control sys-
tem 104 based on modes of the field devices (e.g., via the
mode calculator 208) (block 1032). Alternatively, the
example process 1000 may determine a mode of the process
control system 104 based on statuses of block mode elements.
The example process 1000 then displays the determined
mode of the process control system 104 in an application via
the user interface 107 (e.g., via the renderer 210) (block
1034).

The example process 1000 next determines if any addi-
tional runtime data has been received (e.g., via the runtime
data receiver 204) (block 1036). In some examples, the pro-
cess 1000 may concurrently process runtime data to calculate
modes while the process 1000 displays other modes as graph-
ics. If a graphic is not associated with a mode of the process
control system 104 (block 1028), the example process 1000
also determines if additional runtime data has been received
(block 1036). Further, if amode of at least one field device has
to be calculated (block 1030), the example process 1000
determines if additional runtime data has been received that
includes status information to calculate a mode of the field

US 9,342,072 B2

25
device (block 1036). If additional runtime data has been
received, the example process 1000 of FIG. 10A receives
status information within the runtime data (block 1002).
However, if no additional runtime data has been received, the
example process 1000 terminates.

The example process 1100 of FIG. 11 sets statuses of block
mode elements based on a selected mode of a field device.
The example process 1100 begins by receiving an instruction
to configure a field device to a desired mode (e.g., via the
selection receiver 214) (block 1102). In other examples, the
process 1100 may receive an instruction to set a component
and/or a configuration block to a desired mode. The example
process 1100 may receive the instruction by a user selecting a
mode via a graphic displayed in an application. The example
process 1100 then determines block mode element(s) associ-
ated with the field device (e.g., via the mode selector 216)
(block 1104).

The example process 1100 continues by determining a
status for the block mode element(s) based on the selected
mode of the field device (e.g., via the mode selector 216)
(block 1106). The example process 1100 may determine the
block mode element(s) and/or determine status(es) of the
block mode element(s) based on a device definition file asso-
ciated with the field device. The example process 1100 then
generates a message for the field device to change the block
mode element(s) to the determined status(es) (e.g., via the
mode selector 216) (block 1108). The example process 1100
then transmits the message to the field device via the control-
ler 108 (e.g., via the controller interface 202) (block 1110).
The example process 1100 then returns to receiving an
instruction to set another field device to a desired mode (block
1102). In other examples, the example process 1100 may
terminate after transmitting the message.

The example process 1200 of FIG. 12 manages which
graphics are displayed based on process control status infor-
mation. The example process 1200 begins by receiving status
information from a field device (e.g., via the runtime data
receiver 204) (block 1202). The status information may be
included within runtime data. Further, the status information
may include a condition parameter (e.g., a conditional device
parameter) and/or statuses of normal block mode elements. In
other examples, the process 1200 may access the activation
database 220 to determine if a object associated with a field
device is activated (e.g., via the conditional graphic manager
218) (block 1204). An object may refer to a component, a
configuration block, a parameter, a block mode element, a
feature, and/or a function associated with the field device.

The example process 1200 then determines if an object of
the field device is enabled (e.g., via the conditional graphic
manager 218). Enabled may include activated, available, and/
or licensed. The example process 1200 may determine if an
object is enabled based on information within a condition
parameter and/or if normal block mode elements associated
with the object have a status of automatic. Additionally, the
example process 1200 may determine if configuration blocks
associated with the object are enabled.

If'the object is enabled, the example process 1200 displays
graphic(s) associated with the object within one or more
applications (e.g., via the renderer 210) (block 1208). How-
ever, if the object is not enabled, the example process 1200
removes and/or hides graphic(s) associated with the object
from application(s) (e.g., via the renderer 210) (block 1210).
The example process 1200 then determines if there are any
additional objects (e.g., via the conditional graphic manager
218) (block 1212). In other examples, the process 1200 may
process all objects and/or field devices concurrently. If there
are additional objects, the example process 1200 returns to

30

35

40

45

50

26

receiving status information to determine if graphics associ-
ated with those additional objects should be displayed. How-
ever, if there are not any additional objects, the example
process 1200 terminates.

FIG. 13 is a block diagram of an example processor system
P10 that may be used to implement the example methods and
apparatus described herein. For example, processor systems
similar or identical to the example processor system P10 may
be used to implement the example controller interface 202,
the example runtime data receiver 204, the example block
mode element parser 206, the example crossblock processor
207, the example mode calculator 208, the example renderer
210, the example application interface 212, the example
selection receiver 214, the example mode selector 216, the
example conditional graphic manager 218, the example acti-
vation database 220, the example device descriptor database
120, and/or more generally, the example interface processor
102 of FIGS. 1 and/or 2. Although the example processor
system P10 is described below as including a plurality of
peripherals, interfaces, chips, memories, etc., one or more of
those elements may be omitted from other example processor
systems used to implement one or more of the example con-
troller interface 202, the example runtime data receiver 204,
the example block mode element parser 206, the example
crossblock processor 207, the example mode calculator 208,
the example renderer 210, the example application interface
212, the example selection receiver 214, the example mode
selector 216, the example conditional graphic manager 218,
the example activation database 220, the example device
descriptor database 120, and/or more generally, the example
interface processor 102.

As shown in FIG. 13, the processor system P10 includes a
processor P12 that is coupled to an interconnection bus P14.
The processor P12 includes a register set or register space
P16, which is depicted in FIG. 13 as being entirely on-chip,
but which could alternatively be located entirely or partially
off-chip and directly coupled to the processor P12 via dedi-
cated electrical connections and/or via the interconnection
bus P14. The processor P12 may be any suitable processor,
processing unit or microprocessor. Although not shown in
FIG. 13, the system P10 may be a multi-processor system
and, thus, may include one or more additional processors that
are identical or similar to the processor P12 and that are
communicatively coupled to the interconnection bus P14.

The processor P12 of FIG. 13 is coupled to a chipset P18,
which includes a memory controller P20 and a peripheral
input/output (I1/0) controller P22. As is well known, a chipset
typically provides /O and memory management functions as
well as a plurality of general purpose and/or special purpose
registers, timers, etc. that are accessible or used by one or
more processors coupled to the chipset P18. The memory
controller P20 performs functions that enable the processor
P12 (or processors if there are multiple processors) to access
a system memory P24 and a mass storage memory P25.

The system memory P24 may include any desired type of
volatile and/or non-volatile memory such as, for example,
static random access memory (SRAM), dynamic random
access memory (DRAM), flash memory, read-only memory
(ROM), etc. The mass storage memory P25 may include any
desired type of mass storage device. For example, if the
example processor system P10 is used to implement the
device descriptor database 120 and/or the activation database
220 (FIG. 2), the mass storage memory P25 may include a
hard disk drive, an optical drive, a tape storage device, etc.
Alternatively, if the example processor system P10 is used to
implement the device descriptor database 120 and/or the acti-
vation database 220, the mass storage memory P25 may

US 9,342,072 B2

27

include a solid-state memory (e.g., a flash memory, a RAM
memory, etc.), a magnetic memory (e.g., a hard drive), or any
other memory suitable for mass storage in the device descrip-
tor database 120 and/or the activation database 220.

The peripheral /O controller P22 performs functions that
enable the processor P12 to communicate with peripheral
input/output (I/O) devices P26 and P28 and a network inter-
face P30 via a peripheral 1/O bus P32. The I/O devices P26
and P28 may be any desired type of 1/O device such as, for
example, a keyboard, a display (e.g., a liquid crystal display
(LCD), a cathode ray tube (CRT) display, etc.), a navigation
device (e.g., a mouse, a trackball, a capacitive touch pad, a
joystick, etc.), etc. The network interface P30 may be, for
example, an Ethernet device, an asynchronous transfer mode
(ATM) device, an 802.11 device, a DSL. modem, a cable
modem, a cellular modem, etc. that enables the processor
system P10 to communicate with another processor system.

While the memory controller P20 and the /O controller
P22 are depicted in FIG. 13 as separate functional blocks
within the chipset P18, the functions performed by these
blocks may be integrated within a single semiconductor cir-
cuit or may be implemented using two or more separate
integrated circuits.

At least some of the above described example methods
and/or apparatus are implemented by one or more software
and/or firmware programs running on a computer processor.
However, dedicated hardware implementations including,
but not limited to, application specific integrated circuits,
programmable logic arrays and other hardware devices can
likewise be constructed to implement some or all of the
example methods and/or apparatus described herein, either in
whole or in part. Furthermore, alternative software imple-
mentations including, but not limited to, distributed process-
ing or component/object distributed processing, parallel pro-
cessing, or virtual machine processing can also be
constructed to implement the example methods and/or sys-
tems described herein.

It should also be noted that the example software and/or
firmware implementations described herein are stored on a
tangible storage medium, such as: a magnetic medium (e.g., a
magnetic disk or tape); a magneto-optical or optical medium
such as an optical disk; or a solid state medium such as a
memory card or other package that houses one or more read-
only (non-volatile) memories, random access memories, or
other re-writable (volatile) memories. Accordingly, the
example software and/or firmware described herein can be
stored on a tangible storage medium such as those described
above or successor storage media. To the extent the above
specification describes example components and functions
with reference to particular standards and protocols, it is
understood that the scope of this patent is not limited to such
standards and protocols.

Additionally, although this patent discloses example meth-
ods and apparatus including software or firmware executed
on hardware, it should be noted that such systems are merely
illustrative and should not be considered as limiting. For
example, it is contemplated that any or all of these hardware
and software components could be embodied exclusively in
hardware, exclusively in software, exclusively in firmware or
in some combination of hardware, firmware and/or software.
Accordingly, while the above specification described
example methods, systems, and machine-accessible medium,
the examples are not the only way to implement such systems,
methods and machine-accessible medium. Therefore,
although certain example methods, systems, and machine-
accessible medium have been described herein, the scope of
coverage of this patent is not limited thereto. On the contrary,

10

15

20

25

30

35

40

45

50

55

60

65

28

this patent covers all methods, systems, and machine-acces-
sible medium fairly falling within the scope of the appended
claims either literally or under the doctrine of equivalents.
What is claimed is:
1. A method to display process control information, the
method comprising:
receiving in a processor a first status of a first mode element
associated with an object of a process control device;

receiving in the processor a second status of a second mode
element associated with the object of the process control
device;

combining the first status and the second status;

determining a mode of the object based on the combination

of the first status and the second status, the mode indi-
cating a condition of the object of the process control
device; and

displaying the mode of the object of the process control

device within a user interface as a graphic.

2. A method as defined in claim 1, wherein the mode of the
object is a normal operation mode if the first status matches
the second status.

3. A method as defined in claim 1, wherein the mode of the
object is determined by matching the combination of the first
status and the second status to a predetermined combination
corresponding to a predetermined mode of the object of the
process control device.

4. A method as defined in claim 1, wherein at least one of
the first status or the second status is received from at least one
of'the user interface, the process control device, or a database.

5. A method as defined in claim 1, further comprising
accessing a device definition file associated with the process
control device to compare the combination of the first status
and the second status to predetermined status combinations of
predetermined modes to determine the mode of the object.

6. A method as defined in claim 1, further comprising:

receiving in the processor a third status of a third mode

element associated with the object of the process control
device;

combining the third status with the first status and the

second status; and

determining the mode of the object of the process control

device based on the combination of the first status, the
second status and the third status.

7. A method as defined in claim 1, further comprising:

receiving in the processor a first status of a third mode

element associated with a second object of the process
control device;

receiving in the processor a second status of a fourth mode

element associated with the second object of the process
control device;

determining a second mode of the second object based on

the first status of the third mode element and the second
status of the fourth mode element, the second mode
indicating a condition of the second object of the process
control device; and

displaying the second mode of the second object of the

process control device within the user interface as a
second graphic.

8. A method as defined in claim 7, further comprising:

determining a third mode of the process control device

based on the mode of the object and the second mode of
the second object, the third mode indicating a condition
of the process control device; and

displaying the third mode of the process control device

within the user interface as a third graphic.

9. A method as defined in claim 8, wherein the object of the
process control device is a transducer component and the

US 9,342,072 B2

29

second object of the process control device is a functional
component configurable by a user of the process control
device.

10. A method as defined in claim 8, further comprising
determining a condition of a control routine based at least one
of the mode of the object, the second mode of the second
object or the third mode of the process control device.

11. A method as defined in claim 8, further comprising:

receiving in the processor a first status of a fifth mode

element associated with an object of a second process
control device;

receiving in the processor a second status of a sixth mode

element associated with the object of the second process
control device;

determining a fourth mode of the object based on the first

status of the fifth mode element and the second status of
the sixth mode element, the fourth mode indicating a
condition of the object of the second process control
device; and

displaying the mode of the object of the second process

control device within the user interface as a fourth
graphic.
12. A method as defined in claim 11, further comprising:
determining a seventh mode of a process control system
that includes the first and the second process control
devices based on the fourth mode of the object of the
second process control device and the third mode of the
process control device, the seventh mode indicating a
condition of the process control system; and

displaying the fourth mode of the process control device
within the user interface as a fifth graphic.

13. A method as defined in claim 1, further comprising:

receiving in the processor from a user interface an instruc-

tion to cause the process control device to be in a desired
mode;

changing the first status of the first mode element based on

the desired mode;

changing the second status of the second mode element

based on the desired mode;

transmitting the first status of the first mode element to the

process control device to cause the process control
device to change the operating condition of the object.

14. A method as defined in claim 13, wherein the desired
mode is a normal operating mode, and the changed first status
of'the first mode element includes at least one of a numerical
value, a condition, an event, a boolean value, or a status state.

15. A method as defined in claim 1, wherein the object is a
configuration block defining a feature of the process control
device.

16. An apparatus to display process control information,
the apparatus comprising:

a runtime data receiver to:

receive a first status of a first mode element associated
with a configuration block of an object; and

receive a second status of a second mode element asso-
ciated with the configuration block;

amode calculator to determine a mode of the configuration

block based on a combination of the first status and the
second status, the mode indicating an operating condi-
tion of the configuration block of the object; and

a renderer to display the mode of the configuration block

within a user interface as a graphic.

17. An apparatus as defined in claim 16, wherein the mode
calculator is to determine the mode by matching the combi-
nation of the first status and the second status to a predeter-
mined combination corresponding to a predetermined mode.

20

25

30

35

40

45

50

55

30

18. An apparatus as defined in claim 16, further comprising
a crossblock processor to:
access a device descriptor stored in a database that defines
modes of the object; and
transmit the device descriptor to the mode calculator.
19. An apparatus as defined in claim 18, further compris-
ing:
a selection receiver to receive from a user interface an
instruction to cause the configuration block to be in a
desired mode; and
a mode selector to:
change the first status of the first mode element based on
the desired mode;

change the second status of the second mode element
based on the desired mode; and

transmit the first status of the first mode element to a
process control device associated with the configura-
tion block to cause the configuration block to change
the operating condition of the process control device.

20. An apparatus as defined in claim 19, wherein the mode
selector is to access a device descriptor defining how the
mode selector is to change the first status of the first mode
element based on the desired mode and how the mode selector
is to change the second status of the second mode element
based on the desired mode.

21. An apparatus as defined in claim 16, wherein the mode
calculator is to determine the mode by using the device
descriptor to compare the first status and the second status to
predetermined modes.

22. A tangible article of manufacture storing machine-
readable instructions that, when executed, cause a machine to
at least:

receive a first status of a first mode element associated with
an object of a process control device;

receive a second status of a second mode element associ-
ated with the object of the process control device;

determine a mode of the object based on the first status and
the second status, the mode indicating a condition of the
object of the process control device; and

display the mode of the object of the process control device
within a user interface as a graphic.

23. A method to display process control information, com-

prising:

displaying a status panel graphic within a user interface to
show process control information associated with a pro-
cess control device, including a first graphic indicating a
mode of an object included within the process control
device, wherein the mode of the object is based on a
combination of statuses associated with the object; and

displaying an information panel graphic adjacent to the
status panel graphic including a second graphic display-
ing an output from the object.

24. A method as defined in claim 23, wherein the first
graphic and the second graphic are separated by a distance
equal to at least one half the length of either the first or second
graphic.

25. A method as defined in claim 23, further comprising
displaying within the status panel graphic a third graphic
adjacent the first graphic, the third graphic indicating a mode
of'a second object included within the process control device.

26. A method as defined in claim 25, further comprising
concealing the third graphic if a conditional device parameter
associated with the third graphic indicates the second object
is not enabled.

27. A method as defined in claim 23, wherein displaying
the first graphic includes determining a set of graphics within

US 9,342,072 B2
31

a database associated with a type of the object and matching
the first graphic within the set to at least one of the mode or the
object.

32

